Name

NAD⁺ -

NADH ┥

Essential Question(s):

Glycolysis	s takes place in the
The Krebs	s cycle and electron transport take place in the
nat happens	s during the process of glycolysis?
Glycol	lysis is the process in which molecules of glucose is broken in, producing two molec
of pyri	uvic acid, a 3-carbon compound.
ATP P	roduction
0	At the beginning of glycolysis, the cell up 2 molecules of ATP to the reactio
0	When glycolysis is complete, 4 ATP molecules have been
0	This gives the cell a net of 2 ATP molecules.
NADH	l Production
0	One reaction of glycolysis removes 4 high-energy, passing them to an electror
	carrier called NAD+
0	Each NAD¬+ a pair of high-energy 2 ATP 2 ADP 4 ADP 4 ATP
	electrons and becomes an and NADH molecule.
0	The NADH molecule the electrons
	until they can be transferred to Glucose GOGC
	molecules. 2NAD ⁺ 2 NAD ⁺ 2
• The Ad	dvantage of Glycolysis
0	The process of glycolysis is so that To the electron transport chair transport chair
	cells can produce thousands of ATP molecules
	in a milliseconds.
0	Glycolysis does NOT require oxygen.
ne Krebs Cy	<u>ycle</u> – pyruvic acid is down into carbon dioxide in a series of energy-extracting
<u> </u>	Because citric acid is the first compound formed in this of reactions, it is also
eferred to as	is the citric acid cycle.
ha Kraha av	
	rcle begins when pyruvic glycolysis enters the
ouuceu by	CCC Pyruvic acid
	Mitochondrion

One _____ molecule is removed, forming CO₂ and electrons are _____, changing NAD⁺ to NADH.

Coenzyme A joins the 2-carbon molecule, acetyl-CoA Acetyl-CoA then the 2-carbon acetyl group	Acetyl-CoA
to a 4-carbon, forming citric acid.	
Citric acid is broken down into acarbon compound, then into acarbon compound. Two more molecules of CO ₂ are and electrons join NAD+ and FAD, forming NADH and FADH ₂ .	FADH2 FAD 4-carbon compound FAD
In addition, molecule of ATP is generated. The energy tally from molecule of pyruvic acid is: 4 NADH 1FADH2 1 ATP	ADP ADP NADH NAD ⁺ Copyright Pearson Prentice Hall
Electron Transport Chain – uses the high-energy ADP to ATP.	from the Krebs cycle to
High-energy electrons from NADH and FADH ₂ are along the electron transport chain from one carrier to the next.	FAD 2 NAD ⁺
At the end of the chain, an	e e NAD' EAD END' EAD END' EAD END' ED E E E E E E E E E E E E E E E E E

When 2 high-energy electrons down the electron transport chain, their is used to move hydrogen ions (H ⁺) the membrane.	E INADICE ZINAD	
During electron transport, H ⁺ ions up in the intermembrane space, so it is charged. The other side of the membrane, from which those H+ ions were, is now charged.	2 MAD ¹	
The membranes of the mitochondria contain protein spheres called ATP synthases. As H ⁺ ions through channels into these proteins, the ATP synthase As it, the enzyme grabs a low-energy ADP, attaching a phosphate, forming high-energy	2 NAD ¹	ATP ATP ATP ATP ATP ATP Synthase ATP Synthase ATP Synthase ATP Synthase ATP Synthase
 The Totals Glycolysis produces just ATP molecules per mole The complete breakdown of through including glycolysis, results in the of ATP. 	cellular respiration,	Glycolysis 1 Glucose 2 ATP 2 ATP 2 Pyrtuvic acid 4 ATP 2 Dyrtuvic 2 C2 Krebs Cycle and Electron Transport 2 ATP 4 ATP 2 Dyrtuvic 2 C2 1 Glucose 4 ATP 2 Dyrtuvic 2 C2 1 Clucose 2 Dyrtuvic 2 C2 1 Clucose 2 Dyrtuvic 2 Dyrtuvic 2 C2 1 Clucose 1 Clucose 2 Dyrtuvic 2 C2 1 Clucose 2 Dyrtuvic 2 C2 1 Clucose 2 Dyrtuvic 2 Dyrtu
Summary:		Total number of ATP molecules formed during cellular respiration Copyright Pearson Precise Hall